Reactions of o-Quinones with α-Methyl- (or Methylene) Substituted
Daman R. Gautam, Konstantinos E. Litinas, Konstantina C. Fylaktakidou and Demetrios N. Nicolaides*
Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Therssaloniki, Greece
Received September 26, 2002

Abstract

In Wittig reaction of some α-methyl- and α-methylene-substituted phosphorus ylides with o-quinones, benzo $[b]$ furan derivatives were obtained via the cyclization of the o-vinylphenols, initially formed from the tautomerization of the corresponding intermediate o-quinone methides.

J. Heterocyclic Chem., 40, 399 (2003).

Introduction.
Only a few reactions between o-quinones and phosphorus ylides producing bis-Wittig reaction products have been reported [1-6]. Usually the reactions of phosphorus ylides (2 moles) with o-quinones resulted in different and unexpected products. The products were depended on the ylides used; the ylides of type $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR}$ afforded 2,3-bis-arylbenzofuran [1,5,8], the ylides of type $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOR}$ afforded 2,3 -bis-acylbenzofuran or pyranobenzo[b]furan [7,10], the ylides of type $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOR}$ gave 4 -carbalkoxycoumarin [8-10]. These products might be explained in several steps, 1) normal Wittig reactions giving unstable o-quinone methides, 2) Michael additions of second ylide to the o-quinone methides [5,7-11], 3) Hoffmann elimination of triphenylphosphine giving o-alkenylphenols, 4) oxidative cyclisation giving benzofurans. In our previous paper [12], Wittig reaction of ylides type $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CRCOOR}$ ' with phenanthrene- 9,10 -quinone (1a) giving an unexpected spiro compound and 3-allylphenanthro[9,10-b]furan-2-one ($\mathrm{R}=\mathrm{Me}$), 2-methylphenanthro $[9,10-b]$ furan- 3 -carboxylate ($\mathrm{R}=\mathrm{Et}$), 2-phenyl-phenanthro[9,10-b]furan and 3-benzylidenephenan-thro[9,10-b]furan-2-one ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$) were reported [12]. These products might be derived from 10 -alkenylphenan-threne-9-ol. Vinylphenols, which might be formed in Wittig reaction of some phosphorus ylides with o-quinone, are interesting compounds in fields of material sciences, related to anti-bacterial polymers, non-linear optics, liquid crystals. And, preaparation of vinylphenols was reported by
o-vinylation of phenols with acetylene in presence of $\mathrm{SnCl}_{4}-\mathrm{Nbu}_{3}$ [13].
As a part of our ongoing studies [14,15], the Wittig reaction might be expected for the preparation of o-vinylphenols and benzofurans by using Wittig reactions of some title ylides with o-quinones.
Results and Discussion.
Treatment of phenanthrene-9,10-quinone (1a) with 2-phenylethyl(triphenyl)phosphonium bromide (2) and potassium carbonate in dioxane under reflux (Method A) and separation of the reaction mixture with column chromatography affords 2 -phenylphenanthro[$9,10-b]$ furan (6a) [7] in 15% yield. By a similar treatment of $3,5-\mathrm{di}$ (tert-butyl)benzo-1,2-quinone (1b) 2,4-di(tert-butyl)-6-(2phenylethenyl)phenol (4b) (60\%), 5,7-di(tert-butyl)-2-phenyl-2,3-dihydro-1-benzofuran (5) (19\%) and 5,7-di(tert-butyl)-2-phenyl-1-benzofuran ($\mathbf{6 b}$) (7%) are obtained, while treatment of 1,3-benzodioxol-5,6-dione (1c) with the same phosponium salt in the presence of n-butyllithium (Method B) results to 6-(2-phenylethenyl)-1,3-benzodioxol-5-ol (4c) (25\%) (Scheme 1).
Compounds $\mathbf{4}$ are obviously formed by further tautomerization through an ene reaction of the initially formed o-quinone methides 3 (Wittig monoolefination products). Intramolecular reaction of the o-hydroxyl with alkenyl substituent of $\mathbf{4}$, possibly via a radical mechanism, affords the dihydrofurans 5 , which by air oxidation can lead to compounds 6 . NOE experiments on product $4 b$ showed an interaction between $\mathrm{OH}(5.17 \mathrm{ppm})$ and i) $2-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$

Scheme 1

(1.45 ppm, 1.5%), ii) $\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}(7.26 \mathrm{ppm}, 2 \%)$ and iii) $\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}(7.00 \mathrm{ppm}, 1.0 \%)$ in agreement with the suggested structure, thus, providing unequivocal proof of the identity of the structures $\mathbf{4 b}, \mathbf{5}, \mathbf{6 b}$ and that the Wittig monoolefination of quinone $\mathbf{1 b}$ proceeds on its 1-carbonyl group, in agreement with the literature [9a,b]. Treatment of compound 4b with DDQ affords compounds 5 (42\%) and 6b (25\%).

By treatment of 1a with ethyl(triphenyl)phosphonium bromide (7) (Method A) the known compound 9 [4] (27\%) and 10-phenanthro[9,10-b]furan-3-yl-9-phenanthrenol (12) (19\%) are obtained. The recorded IR spectrum of the compound in question exhibits absorption at $3478 \mathrm{~cm}^{-1}$ $(-\mathrm{OH})$, while the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum exhibits a singlet at $\delta 5.87 \mathrm{ppm}\left(1 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum shows absorptions for aromatic carbons exclusively. Intramolecular reaction of the o-hydroxyl with alkenyl substituent of intermediate $\mathbf{8}$, like above, followed by tandem intermolecular attack of the alkenyl group with the carbonyl carbon of 1a and further dehydration and tautomerization of the intermediates formed, can account for the formation of the unexpected compound 12, as suggested in Scheme 2.

1 H , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ for -OH and at $5.05(\mathrm{~d}, 1 \mathrm{H}$, $J=10.4 \mathrm{~Hz}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz})$ and $5.84(\mathrm{dd}, 1 \mathrm{H}$, $J=10.4$ and 16.9 Hz) for vinyl group, and the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ shows a peak at 200.9 ppm for $-C=\mathrm{O}$. The formation of compound $\mathbf{1 6}$ can be explained, if we consider the participation of the original hydroxyl of betaine, instead of its alkoxy anion, to the formation of an oxaphosphetane intermediate, followed by triphenylphosphine oxide elimination (Scheme 3), like in the last step of the Wittig reaction. α-Hydroxy-alkyl derivatives (instead of the α-hydroxyalkenyl 16) have also been formed through a different mechanism in some other reactions of o-quinones with ylides [5].

By treatment of quinones 1a,c with 1-phenylethyl(triphenyl)phosphonium bromide (17) with method B, in addition to the expected 10-(1-phenylvinyl)-9-phenanthrenol (18a) (44\%), 6-(1-phenylvinyl)-1,3-benzodioxol-5-ol (18b) (34\%), 3-phenylphenanthro[9,10-b]furan (19a) (1%), 7-phenylfuro[2,3-f][1,3]benzodioxole (19b) (2\%) [16], the benzodioxoles [2,5,8,14,17] 2-methyl-2-phenyl-phenanthro[9,10-d][1,3]dioxole (20a) [18] (1\%) and 2-methyl-2-phenyl[1,3]dioxole[4,5-f][1,3]benzodioxole (20b) (14\%) are also obtained (Scheme 4). Treatment of

A deviation of the normal Wittig reaction is observed, during the reaction of quinone 1a with phosphonium salt 13 according to method A . In addition to the expected product 9 (2%), 10-hydroxy-10-vinyl- $9(10 H)$-phenanthrenone (16) is received as a main product in 42% yield (Scheme 3). The recorded IR spectrum for the later shows absorptions at $3480 \mathrm{~cm}^{-1}(-\mathrm{OH})$ and $1680 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum exhibited peaks at 4.30 ppm (s ,
quinone 1a with phosphonium salt 17 with method A results in compounds $\mathbf{1 8 a}(21 \%)$, 19a (26%) and 20a (17%), while the reaction between 1a and $\mathbf{1 7}$, in the presence of lithium hydroxide at $0^{\circ} \mathrm{C}($ Method C$)$ affords again compounds 18a, 19a and 20a in $6 \%, 9 \%$ and 8% yield respectively. Compounds $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ are transformed into compounds 19 a and 19 b in 61% and 50% yield respectively, by treatment with DDQ. The analytical and spectral
data for all new compounds resemble well with structures suggested for them.

The data presented shows that further cyclization of the o-vinylphenols to the corresponding benzofurans depends greatly on their framework, and the nature of and spatial relationship of the alkene relative to the hydroxyl substituent, for the intramolecular nucleophilic attack of the hydroxyl on the alkene to proceed. The relative stability of compounds $\mathbf{4 b}$ and $\mathbf{4 c}$, which were isolated as the main products from the corresponding reactions, can be attributed to the presence of an H -substituent $\left(\mathrm{R}_{4}=\mathrm{H}\right)$ in both cases, in o '-position relative to their 2-phenyl- substituted alkene group, which favours the spatial arrangement of the alkene far from the hydroxyl group. The predominance of product $\mathbf{1 8 b}$ can be attributed to the same
benzene ring, instead of an $o^{\prime}-\mathrm{H}$, in this case. For similar hindrance reasons the products $\mathbf{6 a}, \mathbf{9}$ and $\mathbf{1 2}$ predominate in the corresponding reactions. The formation of compounds 20a and 20b can be explained from the intermediate betaine (Scheme 5) followed by elimination of $\mathrm{Ph}_{3} \mathrm{P}$ [19]. The cyclization of compounds 4b, 18a and 18b in moderate to high yields is effected by their treatment with DDQ, via a different mechanism [20].

The reactions described can be used as an alternative synthetic method for the preparation of the title compounds. The easy preparation of the o-vinylphenols in one step in moderate to good yields ($25-60 \%$) is of special interest, since they can be used as synthons for a variety of further transformations. The reactions studied and the products obtained are depicted in Schemes 1-4.

Scheme 3

15
16

18-20 a: $\mathrm{R}_{1}-\mathrm{R}_{2}=\mathrm{R}_{3}-\mathrm{R}_{4}=(\mathrm{CH}=\mathrm{CH})_{2}$ b: $\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{2}-\mathrm{R}_{3}=\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right)$

Scheme 5

reasons $\left(\mathrm{R}_{4}=\mathrm{H}\right)$, even though an 1-phenyl-substituted alkene group exists in this case, while the phenanthro-core in 18a leads to the isolation of both products 18a and 19a, in almost equal proportion, due to the presence of a fused

EXPERIMENTAL

Mps were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were obtained with a Perkin-Elmer 1310 spectrophotometer as Nujol mulls unless otherwise stated. Nmr spectra were recorded on a Bruker AM 300 (300 MHz , and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) using deuteriochloroform as solvent and TMS as an internal standard. J values are reported in Hz. Mass spectra were determined on a VG- 250 spectrometer at 70 eV under Electron Impact (EI) conditions, or on a Perkin Elmer API 100 Sciex Simple quadrupole under Electronspray Ionization (ESI) conditions. High resolution mass spectra (hrms) were recorded on an Ionspec mass spectrometer under MatrixAssisted Laser Desorption-Ionization Fourier Transform Mass Spectrometer (MALDI-FTMS) conditions with 2,5-dihydroxy-
benzoic acid (DHB) as the matrix. Microanalyses were performed on a Perkin-Elmer 2400-II element analyzer. THF was refluxed over sodium and benzophenone and distilled, when the mixture turned blue. Silica gel $\mathrm{N}^{\circ} 60$, Merck A.G. has been used for column chromatographies.
Wittig Reactions of o-Quinones 1a-c with Phosponium Salts 2, 7, 13, 17.
General Method $\mathrm{A}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$ in dry dioxane).
To a stirred mixture of quinone $\mathbf{1 a , b}$ (3 mmoles), phosphonium salt (3 mmoles) and potassium carbonate (3.6 mmoles) in dry dioxane (15 ml), water (98 mg) was added and the mixture was heated under reflux for $4-72 \mathrm{~h}$. After cooling at room temperature the precipitate was collected by filtration and washed with dichloromethane. The filtrates were combined, the solvents were removed in a rotary evaporator and the residue was subjected to column chromatography. Mixtures of n-hexane with increasing amounts of ethyl acetate or dichloromethane were used as eluents. In addition to the reaction products, unreacted starting quinones were eluted generally after the products described, unless otherwise stated. Quinone 1a was recovered from the reactions with ylides: $\mathbf{2}$ (1a recovered $300 \mathrm{mg}, 48 \%$); 7 (224 mg , 36%); $\mathbf{1 3}$ ($165 \mathrm{mg}, 26 \%$); $\mathbf{1 7}$ ($134 \mathrm{mg}, 21 \%$). Quinone $\mathbf{1 b}$ was recovered from the reactions with salts: $\mathbf{2}$ ($\mathbf{1 b}$ recovered 89 mg , 13\%); 17 ($127 \mathrm{mg}, 19 \%$).

General Method B (BuLi in dry THF).

All of these reactions were carried out under a nitrogen atmosphere. The salt $\mathbf{2}$, $\mathbf{1 7}$ (3.3 mmoles) was suspended in dry THF (50 ml). n-Butyllithium (3.63 mmoles) in hexane $(2.27 \mathrm{ml})$ was added to the stirred mixture (at $0^{\circ} \mathrm{C}$ in the case of $\mathbf{1 a}$, at room temperature in the case of $\mathbf{1 c}$ and at $-60^{\circ} \mathrm{C}$ in the case of $\mathbf{1 c}$ with $\mathbf{2}$) and stirring was continued for 7 min . The red solution was then added to a solution of the quinone 1a,c (3 mmoles) in dry THF (35 ml) at the same temperature. The red color was discharged and the reaction mixture was stirred for further $18-24 \mathrm{~h}$. The solvent was removed in a rotary evaporator. The residue was extracted with dichloromethane ($3 \times 100 \mathrm{ml}$) and dried over sodium sulfate. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography, using mixtures of n-hexane with dichloromethane or with ethyl acetate as eluents. In addition to the reaction products obtained, unreacted starting quinones $\mathbf{1 a}(289 \mathrm{mg}, 46 \%)$, $\mathbf{1 a}$ ($273 \mathrm{mg}, 60 \%$), 1c ($237 \mathrm{mg}, 52 \%$) were recovered from the reactions with
ylides 2, 17, $\mathbf{1 7}$ respectively, eluted after the products obtained.

Method C (Phase Transfer Catalysis) (LiOH in dichloromethane$\mathrm{H}_{2} \mathrm{O}$.

To a stirred solution of quinone $\mathbf{1 a}(0.624 \mathrm{~g}, 3 \mathrm{mmoles})$ and phosphonium salt $\mathbf{1 7}$ ($1.341 \mathrm{~g}, 3$ mmoles) in dichloromethane (45 ml) a freshly prepared 5 N lithium hydroxide solution (7.5 ml) was added at once and the two-phase reaction mixture was further stirred at room temperature for 64 h . The organic phase was separated and the aqueous layer was extracted with dichloromethane ($3 \times 45 \mathrm{ml}$). The combined organic phases were dried over sodium sulfate, the solvent was removed in a rotary evaporator and the residue was subjected to column chromatography, using hexane/dichloromethane or hexane/ethyl acetate mixtures as eluents. In addition to the products obtained, unreacted starting quinone 1a (67%) was also eluted after the products described.

2-Phenylphenanthro[9,10-b]furan (6a).

This compound was obtained (Table 1) as white crystalls, mp 168-170 ${ }^{\circ} \mathrm{C}$ (ether/hexane) (lit.[21] mp 169-170 ${ }^{\circ} \mathrm{C}$).

2,4-Di(tert-butyl)-6-(2-phenylethenyl)phenol (4b).

This compound was obtained (Table 1) as white crystalls, mp $77-79{ }^{\circ} \mathrm{C}$ (hexane); ir: $3510,3050,1590 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.33$ [s, $9 \mathrm{H}, 4-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3]}, 1.45\left[\mathrm{~s}, 9 \mathrm{H}, 6-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 5.17(\mathrm{~s}, 1 \mathrm{H}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{Ph}, \mathrm{J}=16.5)$, 7.23-7.31 (m, 4 H), 7.37 (t, 2H, CH=CH-Ph, J=7.6), 7.52 (d, $2 \mathrm{H}, \mathrm{J}=7.6$); ${ }^{13} \mathrm{C}$ nmr: $\delta 29.9,31.2,34.4,34.8,122.4,123.8,124.0,124.7,126.5$, 127.8, 128.7, 132.0, 135.7, 137.3, 142.6, 149.6; ms (EI): m/z 308 $\left(43, \mathrm{M}^{+}\right), 294$ (24), 293 (100), 105 (13), 91 (25), 77 (10), 57 (81); For $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}$ hrms Calcd. 308.2134; Found: 308.2130

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}$: C 85.7, H 9.15. Found: C 85.65, H 8.95 .

5,7-Di(tert-butyl)-2-phenyl-2,3-dihydro-1-benzofuran (5).

This compound was obtained (Table 1) as white needles, mp 273-276 ${ }^{\circ} \mathrm{C}$ (dichloromethane/hexane); ir: 3050, 1595, 1125 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 0.94(\mathrm{~s}, 9 \mathrm{H}), 1.36$ (s, 9H), 3.38 (d, 1H, J=8.9), 5.28 (d, 1H, J=8.9), $5.79(\mathrm{~s}, 1 \mathrm{H}), 7.12$ (d, 1H, J=2.5), 7.27 (d, 1H, $J=2.5$), 7.31-7.40 (m, 5H); ${ }^{13} \mathrm{C}$ nmr: $\delta 30.0,31.3,33.7,35.0$, 41.2, 80.9, 117.7, 122.8, 126.7, 128.0, 128.1, 128.2, 136.2, 139.9, 140.5, 151.2; ms (EI): m/z 309 (20, M ${ }^{+}+\mathrm{H}$), 308 (31, M+), 307 (16), 294 (16), 293 (54), 119 (100), 91 (85), 77 (29); For $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}$ hrms Calcd. 308.2134; Found: 308.2135 .

Table 1
Products Received from Wittig Reactions of o-Quinones 1a-c with Phosponium Salts 2, 7, 13, 17

$\begin{gathered} \text { o-Quinone } \\ \mathbf{1} \end{gathered}$	Phos. Salt	Method	Reaction Time (h)	Alkenylphenol 4, 18	Dihydrofuran 5	$\begin{gathered} \text { Furan } \\ \mathbf{6 , 9}, \\ \mathbf{1 9} \end{gathered}$	Other Compounds $12,16,20$
1a	2	A	15	-	-	6a(15\%)	
1b	2	B	4	4b(60\%)	5(19\%)	6b(7\%)	
1c	2	B	18	4c(25\%)	-	-	
1a	7	A	51	-	-	9(27\%)	12 (19\%)
1a	13	A	72	-	-	9(2\%)	16 (42\%)
1a	17	A	24	18a(21\%)	-	19a(26\%)	20a (17\%)
1a	17	B	22	-	-	19a(1\%)	20a (1\%)
1a	17	C	64	18a(6\%)	-	19a(9\%)	20a (8\%)
1c	17	B	19	18b (34\%)	-	19b(2\%)	20b (14\%)

5,7-Di(tert-butyl)-2-phenyl-1-benzofuran (6b).

This compound was obtained (Table 1) as white crystalls, mp $90-92{ }^{\circ} \mathrm{C}$ (hexane); ir: $3050,1600,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.39$ (s, $9 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 1 \mathrm{H})$, 7.40-7.46 (m, 3H), 7.86 (d, $2 \mathrm{H}, J=6.4$); ${ }^{13} \mathrm{C} \mathrm{nmr:} \delta 30.0,31.9$, $34.5,34.8,101.4,114.9,119.1,124.7,128.1,128.7,129.3,130.9$, 133.7, 145.7, 151.2, 155.1; ms (EI): m/z $306\left(85, \mathrm{M}^{+}\right)$, 291 (100), 275 (10), 244 (14), 105 (33), 77 (22), 57 (87); For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}$ hrms Calcd. 306.1978; Found: 306.1975.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}$: C 86.2, H 8.55. Found: C 86.1, H 8.8.
6-(2-Phenylethenyl)-1,3-benzodioxol-5-ol (4c).
This compound was obtained (Table 1) as yellow crystalls, mp $109-111{ }^{\circ} \mathrm{C}$ (ether/hexane); ir (KBr): 3478, 1618, 1594, 1158 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 5.03(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=16.1), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=7.6$); ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 98.4,101.3,105.3,117.6,122.6,125.2,126.3$, $127.4,128.1,128.6,143.8,146.2,148.2 ; \mathrm{ms}$ (ESI): m/z 240 $(\mathrm{M}+\mathrm{H})^{+}$; For $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$ hrms Calcd. 240.0781; Found: 240.0782.

Phenanthro[9,10-b]furan (9).
This compound was obtained (Table 1) as white crystalls, mp $118-120^{\circ} \mathrm{C}$ (ether/hexane) (lit.[22] mp 118-119 ${ }^{\circ} \mathrm{C}$).

10-Phenanthro[9,10-b]furan-3-yl-9-phenanthrenol (12).

This compound was obtained (Table 1) as light yellow crystalls, $\mathrm{mp} 273-276{ }^{\circ} \mathrm{C}$ (dichloromethane/hexane); ir: 3478, 3050, 1615, $1595 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 5.87\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $7.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.42-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.67-$ $7.87(\mathrm{~m}, 4 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5), 8.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.7)$, 8.65-8.86 (m, 4H); ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 105.4,107.0,111.1,111.2,113.2$, $114.6,120.7,120.9,122.7,123.3,123.5,123.7,124.1,124.3$, $124.4,124.7,125.4,125.6,125.7,126.6,126.7,126.9,127.1$, 127.3, 127.6, 127.8, 141.3, 143.4, 143.7, 148.2; ms (EI): m/z 411 $\left(17, \mathrm{M}^{+}+\mathrm{H}\right), 410\left(100, \mathrm{M}^{+}\right), 409$ (32), 392 (9), 391 (9), 381 (92), 351 (60), 349 (56), 218 (7), 196 (48), 182 (38), 175 (66).

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{O}_{2}$: C 87.8, H 4.4. Found: C 87.8, H 4.3.

10-Hydroxy-10-vinyl-9(10H)-phenanthrenone (16).
This compound was obtained (Table 1) as white crystalls, mp $105-107{ }^{\circ} \mathrm{C}$ (ether/hexane); ir: 3480, 3050, $1680,1595 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 4.30\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.05(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=10.4), 5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.9), 5.84(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.4$ and 16.9), 7.40-7.45 (m, 3H), 7.68-7.73 (m, 2H), 7.85-7.88 (m, 1H), 7.92$7.98(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr: $\delta 80.4,115.5,123.3,124.0,126.4,127.7$, $128.2,128.4,129.3,129.6,135.3,137.7,138.6,138.8,139.9$, 200.9; ms (EI): m/z 236 (14, M+), 209 (12), 208 (13), 207 (18), 194 (98), 189 (11), 181 (100), 165 (32), 152 (62), 126 (8).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$: C 81.3, H 5.1.Found: C 81.3, H 5.0.

10-(1-Phenylvinyl)-9-phenanthrenol (18a).

This compound was obtained (Table 1) as yellow crystalls, mp $124-126^{\circ} \mathrm{C}$ (ether/hexane); ir: $3460,3060,1585 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta$ $5.62\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.09\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $6.41\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 7.24-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.8), 7.64-7.82(\mathrm{~m}, 2 \mathrm{H}), 8.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3), 8.64(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=8.0$), 8.70 (d, $2 \mathrm{H}, \mathrm{J}=7.8$); ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 99.1,119.2,122.5,123.3$, $124.0,124.9,125.7,126.1,126.4,126.6,126.9,127.3,128.6$,
128.8, 130.6, 131.1, 131.6, 138.6, 143.1, 146.4; ms (EI): m/z 297 (40, M $\left.{ }^{+}+\mathrm{H}\right), 296\left(87, \mathrm{M}^{+}\right), 295$ (100), 279 (41), 265 (49), 252 (36), 219 (29), 218 (53), 189 (73), 165 (35), 91 (55), 77(35).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}$: C 89.1, H 5.4. Found: C 88.7, H 5.3.

3-Phenylphenanthro[9,10-b]furan (19a).

This compound was obtained (Table 1) as yellow crystalls, mp $47-49{ }^{\circ} \mathrm{C}$ (n-hexane); ir: $3050,1600,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.38-$ $7.73(\mathrm{~m}, 9 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, 1 \mathrm{H}, J=8.1), 8.40(\mathrm{~d}, 1 \mathrm{H}$, $J=7.8), 8.73(\mathrm{~d}, 2 \mathrm{H}, J=8.3) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 117.9,120.7,122.0$, $122.4,123.3,123.6,124.0,125.0,125.1,126.0,126.5,127.0$, $127.8,128.4,128.6,129.2,129.9,133.1,141.4,149.7 ; \mathrm{ms}$ (EI): m/z $295\left(54, \mathrm{M}^{+}+\mathrm{H}\right), 294\left(42, \mathrm{M}^{+}\right), 293\left(61, \mathrm{M}^{+}-\mathrm{H}\right), 265(100)$, 263 (51), 131(34), 119 (42), 105 (45).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}$: C 89.8, H 4.8. Found: C 89.8, H 4.8.
2-Methyl-2-phenylphenanthro[9,10- $d][1,3]$ dioxole (20a).
This compound was obtained (Table 1) as yellow crystalls, mp $85-87^{\circ} \mathrm{C}$ (ether/hexane) (lit.[18] mp $90^{\circ} \mathrm{C}$).

6-(1-Phenylvinyl)-1,3-benzodioxol-5-ol (18b).

This compound was obtained (Table 1) as yellow oil; ir: 3500, 3040, 1620,1495, 1220, 1170, 1120, $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 5.13$ $(\mathrm{s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.79\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $5.89(\mathrm{~s}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr: $\delta 97.9,101.1,109.1,116.4,118.9,127.1,128.5,128.6,139.6$, 141.2, 145.3, 148.1, 148.3; ms (EI): m/z 240 (57, M+), 239 (100), 225 (22), 181 (7), 152 (17), 139 (9), 128 (12), 115 (9).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$: C 75.0, H 5.0. Found: C 74.6, H5.1.

7-Phenylfuro[2,3- $f][1,3$]benzodioxole (19b) [16].
This compound was obtained (Table 1) as yellow crystallls, mp 109-110 ${ }^{\circ} \mathrm{C}$ (ether); ir (dichloromethane): 3040, 1585, 1275, $1225,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.4) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 98.9$, $101.9,106.4,110.0,119.8,123.8,128.2,128.4,128.6,131.4$, 136.5, 145.3, 146.6; ms (EI): m/z 238 (50, M ${ }^{+}$), 210 (10), 181 (14), 161 (11), 133 (13), 131 (12), 105 (100), 77 (82).

2-Methyl-2-phenyl[1,3]dioxole[4,5-f][1,3]benzodioxole (20b).
This compound was obtained (Table 1) as light brown crystalls, mp 45-47 ${ }^{\circ} \mathrm{C}$ (ether/hexane); ir: 3050, 1595, $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 1.95(\mathrm{~s}, 3 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 2 \mathrm{H}), 7.41-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 26.8,93.0,98.5$, $100.9,101.3,117.3,124.9,128.1,128.3,128.6,128.8,141.0$, 141.3; ms (EI): m/z 256 (38, M^{+}), 239 (10), 154 (100), 103 (50).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$: C 70.3, H 4.7. Found: C 69.9, H 4.9.
Cyclization of Alkenylphenols $\mathbf{4 b}, \mathbf{1 8 a}$ and $\mathbf{1 8 b}$ to Corresponding Furans.

Cyclization of $\mathbf{4 b}$.
A solution of $\mathbf{4 b}$ ($52 \mathrm{mg}, 0.168 \mathrm{mmole}$) and DDQ ($75 \mathrm{mg}, 0.33$ mmole) in dry benzene (2 ml) was heated under reflux for 1 h . The reaction mixture was concentrated and the residue was extracted with chloroform $(15 \mathrm{ml})$. The organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$ solution $(10 \mathrm{ml})$, then with water $(10 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was separated by column chromatography (hexane/ethyl acetate 50:1) to give dihydrofuran $5(22 \mathrm{mg}, 42 \%)$ and furan $\mathbf{6 b}(13 \mathrm{mg}, 25 \%)$.

Conversion of 18a to 19a.

A mixture of compound 18a ($28 \mathrm{mg}, 0.094 \mathrm{mmole}$), phosphonium salt 17 ($47 \mathrm{mg}, 0.105 \mathrm{mmole}$) and potassium carbonate ($17 \mathrm{mg}, 0.123 \mathrm{mmole}$) in dioxane (1.5 ml , containing traces of water) was heated under reflux for 60 h to give after separation by column chromatography furan $\mathbf{1 9 a}$ ($12 \mathrm{mg}, 44 \%$).

Conversion of 18a to 19a.

A solution of 18a ($20 \mathrm{mg}, 0.067 \mathrm{mmole}$) and DDQ (33 mg , 0.145 mmole) in dry benzene (3 ml) was refluxed for 20 min , the reaction mixture was concentrated and extracted with chloroform $(10 \mathrm{ml})$ and washed with $5 \% \mathrm{NaHCO}_{3}$ solution (12 ml). The organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent gave compound 19a ($12 \mathrm{mg}, 61 \%$).

Conversion of 18b to 19b.

A solution of 18b ($6 \mathrm{mg}, 0.025 \mathrm{mmole}$) and DDQ $(12 \mathrm{mg}$, 0.05 mmole) in dry benzene (1 ml) was refluxed for 1 h . The reaction mixture was concentrated, extracted with chloroform $(5 \mathrm{ml})$ and washed with $5 \% \mathrm{NaHCO}_{3}$ solution (5 ml). The organic layer was washed with water (3 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give compound $\mathbf{1 9 b}$ ($3 \mathrm{mg}, 50 \%$).

Acknowledgments.
D. R. G. thanks State Scholarships Foundation (I.K.Y.), Greece for financial support and Tribhuvan University, Kathmandu, Nepal for granting him the PhD study leave.

REFERENCES AND NOTES

[1] W. W. Sullivan, D. Ullman and H. Shechter, Tetrahedron Lett., 457 (1969).
[2] D. N. Nicolaides and K. E. Litinas, J. Chem. Res. (S), 57 (1983); (M), 658.
[3] A. Minsky and M. Rabinovitz, Synthesis, 497 (1983).
[4] D. N. Nicolaides and K. E. Litinas, J. Chem. Soc., Perkin Trans. I, 429 (1985).
[5] D. N. Nicolaides, K. E. Litinas and N. G. Argyropoulos, J. Chem. Soc., Perkin Trans. I, 415 (1986).
[6a] W. M. Abdou, N. A. Ganoub and N. M. Abdel-Rahman, Phosphorus, Sulfur and Silicon, 61, 91 (1991); [b] C. Yang, D. T. C. Yang and R. G. Harvey, Synlett., 799 (1992).
[7] D. N. Nicolaides, D. A. Lefkaditis P. S. Lianis and K. E. Litinas, J. Chem. Soc., Perkin Trans. I, 2329 (1989).
[8] H. J. Bestmann and H. J. Lang, Tetrahedron Lett., 25, 2101 (1969).
[9a] D. N. Nicolaides, S. G. Adamopoulos, D. A. Lefkaditis and K. E. Litinas, J. Chem. Soc., Perkin Trans. I, 2127 (1990); [b] D. N. Nicolaides; S. G. Adamopoulos; D. A. Lefkaditis; K. E. Litinas and P. V. Tarantili, J. Chem. Soc., Perkin Trans. I, 283 (1992); [c] F. H. Osman, N. M. Abdel-Rahman and F. A. El-Sounahy, Tetrahedron, 49, 8691 (1993).
[10] D. N. Nicolaides, C. Bezergiannidou-Balouctsi, K. E. Litinas, E..Malamidou-Xenikaki, D Mentzafos; and A. Terzis, J. Chem. Res. (S), 108 (1993).
[11] L. S. Boulos and I. T. Hennawy, Phosphorus, Sulfur, Silicon Relat. Elem., 84, 173 (1993).
[12] D. N. Nicolaides, K. E. Litinas, D. A. Lefkaditis, S. G. Adamopoulos, C. P. Raptopoulou and A. Terzis, J. Chem. Soc., Perkin Trans. I, 2107 (1994).
[13] M. Yamaguchi, M. Arisawa, K. Omata, K. Kabuto, M. Hirama and T. Uchimaru, J. Org. Chem., 63, 7298 (1998) and references therein.
[14] K. C. Fylaktakidou, D. R. Gautam, D. J. HadjipavlouLitina, C. A. Kontogiorgis, K. E. Litinas and D. N. Nicolaides, J. Chem. Soc., Perkin Trans. I, 3073 (2001).
[15] D. N. Nicolaides, D. R. Gautam, K. E. Litinas and Th. Papamehael, J. Chem. Soc., Perkin Trans., 1, 1455 (2002).
[16] R. A. Scherrer, U. S., 4, 174403; Chem. Abstr., 92, 128895n (1980).
[17a] G. Cardillo, L. Merlini and S. Servi, Ann. Chim. (Rome), 60, 564 (1970); [b] W. M. Abdou, Phosphorus, Sulfur, Silicon, Relat. Elem., 66, 285 (1992).
[18] A. Schonberg and A. Mustafa, J. Chem. Soc., 746 (1946).
[19] D. R. Gautam, K. E. Litinas, K. C. Fylaktakidou and D. N. Nicolaides, Phosphorus, Sulfur, Silicon, Relat. Elem., in press.
[20] K. Imafuku and R. Fujita, Chemistry Express, 6, 323 (1991).
[21] F. M. Soliman; K. M. Khalil and G. Abd El-naim, Phosphorus, Sulfur, 35, 41 (1988).
[22] A. Padwa and R. Hartmann, J. Am. Chem. Soc., 88, 3759 (1966).

